Clustered regularly interspaced palindromic repeats (CRISPRs) and the CRISPR-associated (Cas) nuclease protect bacteria and archeae from foreign DNA by site-specific cleavage of incoming DNA. Type-II CRISPR-Cas systems, such as the Streptococcus pyogenes CRISPR-Cas9 system, can be adapted such that Cas9 can be guided to a userdefined site in the chromosome to introduce doublestranded breaks. Here we have developed and optimized CRISPR-Cas9 function in the lactic acid bacterium Lactobacillus reuteriATCC PTA 6475. We established proof-of-concept showing that CRISPR-Cas9 selection combined with single-stranded DNA (ssDNA) recombineering is a realistic approach to identify at high efficiencies edited cells in a lactic acid bacterium. We show for three independent targets that subtle changes in the bacterial genome can be recovered at efficiencies ranging from 90 to 100%. By combining CRISPR-Cas9 and recombineering, we successfully applied codon saturation mutagenesis in the L. reuteri chromosome. Also, CRISPR-Cas9 selection is critical to identify low-efficiency events such as oligonucleotide-mediated chromosome deletions. This also means that CRISPR-Cas9 selection will allow identification of recombinant cells in bacteria with low recombineering efficiencies, eliminating the need for ssDNA recombineering optimization procedures. We envision that CRISPR-Cas genome editing has the potential to change the landscape of genome editing in lactic acid bacteria, and other Gram-positive bacteria.
CITATION STYLE
Oh, J. H., & Van Pijkeren, J. P. (2014). CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Research, 42(17). https://doi.org/10.1093/nar/gku623
Mendeley helps you to discover research relevant for your work.