Three-phase feeder load balancing based optimized neural network using smart meters

7Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

The electricity distribution system is the coupling point between the utility and the end-user. Typically, these systems have unbalanced feeders due to the variety of customers’ behaviors. Some significant problems occur; the unbalanced loads increase the operational cost and system investment. In radial distribution systems, swapping loads between the three phases is the most effective method for phase balancing. It is performed manually and subjected to load flow equations, capacity, and voltage constraints. Recently, due to smart grids and automated networks, dynamic phase balancing received more attention, thus swapping the loads between the three phases automatically when unbalance exceeds permissible limits by using a remote-controlled phase switch selector/controller. Automatic feeder reconfiguration and phase balancing eliminates the service interruption, enhances energy restoration, and minimize losses. In this paper, a case study from the Irbid district electricity company (IDECO) is presented. Optimal reconfiguration of phase balancing using three techniques: feed-forward back-propagation neural network (FFBPNN), radial basis function neural network (RBFNN), and a hybrid are proposed to control the switching sequence for each connected load. The comparison shows that the hybrid technique yields the best performance. This work is simulated using MATLAB and C programming language.

Cite

CITATION STYLE

APA

Alhmoud, L., Nawafleh, Q., & Merrji, W. (2021). Three-phase feeder load balancing based optimized neural network using smart meters. Symmetry, 13(11). https://doi.org/10.3390/sym13112195

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free