Protection of plasma membrane K+ transport by the salt overly sensitive1 Na+-H+ antiporter during salinity stress

176Citations
Citations of this article
113Readers
Mendeley users who have this article in their library.

Abstract

Physicochemical similarities between K+ and Na+ result in interactions between their homeostatic mechanisms. The physiological interactions between these two ions was investigated by examining aspects of K+ nutrition in the Arabidopsis salt overly sensitive (sos) mutants, and salt sensitivity in the K+ transport mutants akt1 (Arabidopsis K+ transporter) and skor (shaker-like K+ outward-rectifying channel). The K+-uptake ability (membrane permeability) of the sos mutant root cells measured electrophysiologically was normal in control conditions. Also, growth rates of these mutants in Na +-free media displayed wild-type K+ dependence. However, mild salt stress (50 mM NaCl) strongly inhibited root-cell K+ permeability and growth rate in K+-limiting conditions of sos1 but not wild-type plants. Increasing K+ availability partially rescued the sos1 growth phenotype. Therefore, it appears that in the presence of Na +, the SOS1 Na+-H+ antiporter is necessary for protecting the K+ permeability on which growth depends. The hypothesis that the elevated cytoplasmic Na+ levels predicted to result from loss of SOS1 function impaired the K+ permeability was tested by introducing 10 mM NaCl into the cytoplasm of a patch-clamped wild-type root cell. Complete loss of AKT1 K+ channel activity ensued. AKT1 is apparently a target of salt stress in sos1 plants, resulting in poor growth due to impaired K+ uptake. Complementary studies showed that akt1 seedlings were salt sensitive during early seedling development, but skor seedlings were normal. Thus, the effect of Na+ on K+ transport is probably more important at the uptake stage than at the xylem loading stage. © 2004 American Society of Plant Biologists.

Cite

CITATION STYLE

APA

Qi, Z., & Spalding, E. P. (2004). Protection of plasma membrane K+ transport by the salt overly sensitive1 Na+-H+ antiporter during salinity stress. Plant Physiology, 136(1), 2548–2555. https://doi.org/10.1104/pp.104.049213

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free