Pyrophosphate levels strongly influence ascorbate and starch content in tomato fruit

20Citations
Citations of this article
55Readers
Mendeley users who have this article in their library.

Abstract

Ascorbate (vitamin C) deficiency leads to low immunity, scurvy, and other human diseases and is therefore a global health problem. Given that plants are major ascorbate sources for humans, biofortification of this vitamin in our foodstuffs is of considerable importance. Ascorbate is synthetized by a number of alternative pathways: (i) from the glycolytic intermediates D-glucose-6P (the key intermediates are GDP-D-mannose and L-galactose), (ii) from the breakdown of the cell wall polymer pectin which uses the methyl ester of D-galacturonic acid as precursor, and (iii) from myo-inositol as precursor via myo-inositol oxygenase. We report here the engineering of fruit-specific overexpression of a bacterial pyrophosphatase, which hydrolyzes the inorganic pyrophosphate (PPi) to orthophosphate (Pi). This strategy resulted in increased vitamin C levels up to 2.5-fold in ripe fruit as well as increasing in the major sugars, sucrose, and glucose, yet decreasing the level of starch. When considered together, these finding indicate an intimate linkage between ascorbate and sugar biosynthesis in plants. Moreover, the combined data reveal the importance of PPi metabolism in tomato fruit metabolism and development. © 2013 Osorio, Nunes-Nesi, Stratmann and Fernie.

Cite

CITATION STYLE

APA

Osorio, S., Nunes-Nesi, A., Stratmann, M., & Fernie, A. R. (2013). Pyrophosphate levels strongly influence ascorbate and starch content in tomato fruit. Frontiers in Plant Science, 4(AUG). https://doi.org/10.3389/fpls.2013.00308

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free