Assessing biases, relaxing moralism: On ground-truthing practices in machine learning design and application

33Citations
Citations of this article
69Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

This theoretical paper considers the morality of machine learning algorithms and systems in the light of the biases that ground their correctness. It begins by presenting biases not as a priori negative entities but as contingent external referents—often gathered in benchmarked repositories called ground-truth datasets—that define what needs to be learned and allow for performance measures. I then argue that ground-truth datasets and their concomitant practices—that fundamentally involve establishing biases to enable learning procedures—can be described by their respective morality, here defined as the more or less accounted experience of hesitation when faced with what pragmatist philosopher William James called “genuine options”—that is, choices to be made in the heat of the moment that engage different possible futures. I then stress three constitutive dimensions of this pragmatist morality, as far as ground-truthing practices are concerned: (I) the definition of the problem to be solved (problematization), (II) the identification of the data to be collected and set up (databasing), and (III) the qualification of the targets to be learned (labeling). I finally suggest that this three-dimensional conceptual space can be used to map machine learning algorithmic projects in terms of the morality of their respective and constitutive ground-truthing practices. Such techno-moral graphs may, in turn, serve as equipment for greater governance of machine learning algorithms and systems.

Cite

CITATION STYLE

APA

Jaton, F. (2021). Assessing biases, relaxing moralism: On ground-truthing practices in machine learning design and application. Big Data and Society, 8(1). https://doi.org/10.1177/20539517211013569

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free