Event-triggered robust RHC of continuous-time nonlinear systems

0Citations
Citations of this article
1Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The event-triggered control is of compelling features in exploiting system resources, and thus has found many applications in sensor networks, networked control systems, multi-agent systems, and so on. In this chapter, we study the event-triggered RHC problem for continuous-time nonlinear systems subject to bounded disturbances. An event-triggered mechanism is first designed by measuring the error between the system state and its optimal prediction; the event-triggered RHC algorithm, built upon the triggering mechanism and the dual-mode approach, is then designed. The rigorous analysis of the feasibility and stability are conducted, and the sufficient conditions for ensuring the feasibility and stability are developed. We show that the feasibility of the event-triggered RHC algorithm can be guaranteed if, the prediction horizon is designed properly and the disturbances are small enough. Furthermore, it is shown that the stability is related to the prediction horizon, the disturbance bound and the triggering level, and that the closed-loop system is stabilized into a robust invariant set under the proposed conditions. Finally, a case study is provided to verify the theoretical results.

Cite

CITATION STYLE

APA

Li, H., & Shi, Y. (2017). Event-triggered robust RHC of continuous-time nonlinear systems. In Studies in Systems, Decision and Control (Vol. 83, pp. 163–181). Springer International Publishing. https://doi.org/10.1007/978-3-319-48290-3_8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free