An accurate determination of the contact pressure and local sliding in a cold rolling process is an essential step towards the prediction of the roller’s life due to wear damage. This investigation utilized finite element analysis to quantify the local contact pressure and local sliding over the rolling bite in a plate cold rolling process. It was the first study to quantify the local sliding distance in a rolling process using the Finite Element Analysis (FEA). The numerical results indicate that the local contact pressure over the rolling bite demonstrates a hill profile, and the peak coincides with the neutral plane. The local sliding distance over the rolling bite demonstrates a double-peak profile with the two peaks appearing at the forward slip and backward slip zones respectively. The amplitude of sliding distance in the backward slip zone is larger than that in the forward slip zone. A stick zone was confirmed between the forward slip and backward slip zones. According to a parametric study, the local contact pressure and sliding distance decrease when the thickness reduction is reduced or the diameter of the roller is decreased. The location of the neutral plane always presents at the rolling exit side of the rolling bite’s center. The size of the stick zone enlarges and the sizes of slip zones shrink significantly when the friction coefficient is increased. Finally, a novel concept of wear intensity was defined to examine the wear of the roller based on the local contact pressure and local sliding distance. The results show that a two-peak wear response exists in the backward and forward slip zones. The magnitude of the wear in the backward slip zone is larger than that in the forward slip zone. For a given roller and blank material combination, using a smaller thickness reduction, a smaller diameter roller and a higher friction coefficient condition can reduce the wear of the roller for a single rolling cycle. The current paper develops an understanding of rolling contact responses to the wear of the roller in rolling process. The research method can also be applied to study other rolling or sliding wear problems.
CITATION STYLE
Jin, Q., Wang, W., Jiang, R., Chiu, L. N. S., Liu, D., & Yan, W. (2017). A numerical study on contact condition and wear of roller in cold rolling. Metals, 7(9). https://doi.org/10.3390/met7090376
Mendeley helps you to discover research relevant for your work.