Thermococcus kodakarensis grows optimally at 85°C and possesses two chaperonins, cold-inducible CpkA and heat-inducible CpkB, which are involved in adaptation to low and high temperatures, respectively. The two chaperonins share a high sequence identity (77%), except in their C-terminal regions. CpkA, which contains tandem repeats of a GGM motif, shows its highest ATPase activity at 60°C to 70°C, whereas CpkB shows its highest activity at temperatures higher than 90°C. To clarify the effects of changes in ATPase activity on chaperonin function at lower temperatures, various CpkA variants were constructed by introducing single point mutations into the C-terminal region. A CpkA variant in which Glu530 was replaced with Gly (CpkA-E530G) showed increased ATPase activity, with its highest activity at 50°C. The efficacy of the CpkA variants against denatured indole-3- glycerol-phosphate synthase of T. kodakarensis (TrpC Tk), which is a CpkA target, was then examined in vitro. CpkA-E530G was more effective than wild-type CpkA at facilitating the refolding of chemically unfolded TrpC Tk at 50°C. The effect of cpkA-E530G on cell growth was then examined by introducing cpkA-E530G into the genome of T. kodakarensis KU216 (pyrF). The mutant strain, DA4 (pyrF cpkA-E530G), grew as well as the parental KU216 strain at 60°C. In contrast, DA4 grew more vigorously than KU216 at 50°C. These results suggested that the CpkA-E530G mutation prevented cold denaturation of proteins under coldstress conditions, thereby enabling cells to grow in cooler environments. Thus, a single base pair substitution in a chaperonin gene allows cells to grow vigorously in a new environment.
CITATION STYLE
Gao, L., Imanaka, T., & Fujiwara, S. (2015). A mutant chaperonin that is functional at lower temperatures enables hyperthermophilic archaea to grow under cold-stress conditions. Journal of Bacteriology, 197(16), 2642–2652. https://doi.org/10.1128/JB.00279-15
Mendeley helps you to discover research relevant for your work.