Integration is a key way to improve the switching frequency and power density for a DC-DC converter. A monolithic integrated GaN based DC-DC buck converter is realized by using a gate driver and a half-bridge power stage. The gate driver is composed of three stages (amplitude amplifier stage, level shifting stage and resistive-load amplifier stage) to amplify and modulate the driver control signal, i.e., CML (current mode logic) level of which the swing is from 1.1 to 1.8 V meaning that there is no need for an additional buffer or preamplifier for the control signal. The gate driver can provide sufficient driving capability for the power stage and improve the power density efficiently. The proposed GaN based DC-DC buck converter is implemented in the 0.25 µm depletion mode GaN-on-SiC process with a chip area of 1.7 mm × 1.3 mm, which is capable of operating at high switching frequency up to 200 MHz and possesses high power density up to 1 W/mm2 at 15 V output voltage. To the authors’ knowledge, this is the highest power density for GaN based DC-DC converter at the hundreds of megahertz range.
CITATION STYLE
Lai, L., Zhang, R., Cheng, K., Xia, Z., Wei, C., Wei, K., … Liu, X. (2020). Monolithic integrated high frequency gan dc-dc buck converters with high power density controlled by current mode logic level signal. Electronics (Switzerland), 9(9), 1–13. https://doi.org/10.3390/electronics9091540
Mendeley helps you to discover research relevant for your work.