High-resolution computed tomography (HRCT) images in interstitial lung disease (ILD) screening can help improve healthcare quality. However, most of the earlier ILD classification work involves time-consuming manual identification of the region of interest (ROI) from the lung HRCT image before applying the deep learning classification algorithm. This paper has developed a two-stage hybrid approach of deep learning networks for ILD classification. A conditional generative adversarial network (c-GAN) has segmented the lung part from the HRCT images at the first stage. The c-GAN with multiscale feature extraction module has been used for accurate lung segmentation from the HRCT images with lung abnormalities. At the second stage, a pretrained ResNet50 has been used to extract the features from the segmented lung image for classification into six ILD classes using the support vector machine classifier. The proposed two-stage algorithm takes a whole HRCT as input eliminating the need for extracting the ROI and classifies the given HRCT image into an ILD class. The performance of the proposed two-stage deep learning network-based ILD classifier has improved considerably due to the stage-wise improvement of deep learning algorithm performance.
CITATION STYLE
Pawar, S. P., & Talbar, S. N. (2022). Two-Stage Hybrid Approach of Deep Learning Networks for Interstitial Lung Disease Classification. BioMed Research International, 2022. https://doi.org/10.1155/2022/7340902
Mendeley helps you to discover research relevant for your work.