The oil and gas industry faces a challenge in meeting global energy demand due to sand production in unconsolidated or semi-consolidated reservoirs, leading to equipment wear, production instability, and significant financial burdens. Mechanical and chemical sand control methods are being used among which chemical sand consolidation techniques have emerged as a promising solution. In this research, furan polymer-based nanofluid is investigated as a chemical consolidant to explore its intriguing properties and characteristics and how the quantity of nanoparticles influences the fundamental properties of curing resin and wettability while pioneering a groundbreaking approach to enhancing regaining permeability. According to the findings, a substantial boost in core compressive strength has been achieved as well as an impressive increase in re-permeability, especially for the foam injection case, by the meticulous optimization of nanofluid composition. The results include a remarkable regain permeability of 91.37%, a robust compressive strength of 1812.05 psi, and a noteworthy 15.32-degree shift towards water-wet wettability. Furthermore, silica nanoparticles were incorporated to enhance the thermal stability of the fluid, rendering it more adaptable to higher temperatures. Therefore, Furan polymer-based nanofluid is not only expected to present a solution to the challenge of sand production in the oil and gas industry but also to provide operational sustainability.
CITATION STYLE
Dargi, M., Khamehchi, E., & Ghallath, F. (2024). Sandstone chemical consolidation and wettability improvement using furan polymer-based nanofluid. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-56007-3
Mendeley helps you to discover research relevant for your work.