Short communication: Heat resistance of Escherichia coli strains in raw milk at different subpasteurization conditions

27Citations
Citations of this article
44Readers
Mendeley users who have this article in their library.

Abstract

A commonly applied treatment of raw milk to reduce bacterial loads is the short-time application of heat at subpasteurization levels under continuous flow, generally referred to as thermization, because this method retains some of the beneficial properties of raw milk. In a previous study, Escherichia coli strains exhibiting increased thermotolerance were found, demanding investigations into their ability to survive thermization. Nine E. coli strains, including 4 Shiga toxin-producing E. coli (STEC) strains, were investigated for their reduction during a thermization treatment in raw milk using a pilot-plant pasteurizer to reflect typically applied commercial conditions. Six of the 9 E. coli strains, including the 4 STEC strains, were similarly inactivated at 60, 62.5, and 65°C, whereas increased thermotolerance was observed for 3 E. coli strains. All strains were reduced to <2 log10 at 60 and 62.5°C within 25s. At 65°C, 6 of 9 E. coli strains were reduced by at least 5 log10 after 25s, whereas at 67.5°C, such a reduction was observed for 8 strains. A much higher thermotolerance was found for E. coli strain FAM21805. For some E. coli strains, time-temperature combinations above 65°C were required to obtain a substantial reduction during a thermization treatment. © 2013 American Dairy Science Association.

Cite

CITATION STYLE

APA

Peng, S., Hummerjohann, J., Stephan, R., & Hammer, P. (2013). Short communication: Heat resistance of Escherichia coli strains in raw milk at different subpasteurization conditions. Journal of Dairy Science, 96(6), 3543–3546. https://doi.org/10.3168/jds.2012-6174

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free