Effect of Holstein genotype on ex-vivo interleukin-1β response to lipopolysaccharide (LPS), lipoteichoic acid (LTA) and heat-killed Gram-negative and Gram-positive bacteria

1Citations
Citations of this article
1Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Effects of Holstein genotype on interleukin-1β response were assessed by ex-vivo stimulation of whole blood with lipopolysaccharide (LPS), lipoteichoic acid (LTA), or sonicated, heat-killed Gram-negative or Gram-positive bacteria. Holstein genotypes were unselected Holsteins (UH, n = 14) not subjected to selection pressures since the mid-1960s and contemporary Holsteins (CH, n = 13). Milk yield of UH and CH cows differ by more than 4500 kg/lactation. Whole blood was mixed with 0.01 µg LPS, 10 µg LTA or 2.5 × 106 CFU of sonicated, heat-killed E. coli, K. pneumoniae, S. marcescens, S. aureus, S. dysgalactiae, or S. uberis per mL of blood and incubated (4 h, 37 °C). Plasma IL-1β was quantified by ELISA and log10-transformed concentrations analyzed with a multivariate linear mixed effects model. Responses to bacteria were greater than responses to LPS or LTA. Responses to LPS, LTA and the Gram-negative stimulants were greater in UH than in CH cows while responses to the Gram-positive bacteria did not differ between Holstein genotypes. In both genotypes, strong correlations were detected among IL-1β responses to the Gram-negative stimulants and to LTA. There were strong correlations among IL-1β responses to the Gram-positive bacteria in CH cows but only between S. aureus and S. dysgalactiae in UH cows. The IL-1β response to S. uberis was highly correlated with responses to all of the Gram-negative stimulants in CH cows but only with E. coli in the UH cows. The reduced immune response could make contemporary cows more susceptible to infection by Gram-negative bacteria. Results confirm selection practices since the mid-1960s have altered immune response in the Holstein, at least to Gram-negative bacteria, and validate the need for additional studies to further evaluate the impacts of these selection practices on immune function in contemporary Holsteins.

Cite

CITATION STYLE

APA

Brink, A. A., Weber, W. J., Lippolis, J. D., Cole, J. B., Rendahl, A. K., Caixeta, L., … Crooker, B. A. (2023). Effect of Holstein genotype on ex-vivo interleukin-1β response to lipopolysaccharide (LPS), lipoteichoic acid (LTA) and heat-killed Gram-negative and Gram-positive bacteria. Veterinary Immunology and Immunopathology, 258. https://doi.org/10.1016/j.vetimm.2023.110573

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free