A hybrid method for reconstructing the historical evolution of aerosol optical depth from sunshine duration measurements

7Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

A novel method has been developed to estimate aerosol optical depth (AOD) from sunshine duration (SD) measurements under cloud-free conditions. It is a physically based method serving for the reconstruction of the historical evolution of AOD during the last century. In addition to sunshine duration data, it requires daily water vapor and ozone products as inputs taken from the ECMWF 20th century reanalysis ERA-20C, available at the global scale over the period 1900-2010. Surface synoptic cloud observations are used to identify cloud-free days. For 16 sites over Europe, the accuracy of the estimated daily AOD, and its seasonal variability, is similar to or better than those from two earlier methods when compared to AErosol RObotic NETwork measurements. In addition, it also improves the detection of the signal from massive aerosol events such as important volcanic eruptions (e.g., Arenal and Fernandina Island in 1968, El Chichón in 1982 and Pinatubo in 1992). Finally, the reconstructed AOD time series are in good agreement with the dimming/brightening phenomenon and also provide preliminary evidence of the early-brightening phenomenon.

Cite

CITATION STYLE

APA

Wandji Nyamsi, W., Lipponen, A., Sanchez-Lorenzo, A., Wild, M., & Arola, A. (2020). A hybrid method for reconstructing the historical evolution of aerosol optical depth from sunshine duration measurements. Atmospheric Measurement Techniques, 13(6), 3061–3079. https://doi.org/10.5194/amt-13-3061-2020

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free