Strengthening in magnesium alloys by icosahedral phase

Citations of this article
Mendeley users who have this article in their library.


Strengthening effects of quasicrystalline icosahedral phase has been studied in two alloys Mg95Zn4.2Y0.8 and Mg 92.5Zn6.5Y extruded at 250 and 400 °C. The quasicrystal particles are facetted and show definite orientation relationships with the matrix. Due to its high symmetry and quasiperiodicity, the icosahedral phase can form strong interfaces with the matrix in various orientations. The icosahedral phase particles have a strong pinning effect on the grain boundaries, which stabilizes grain size. The icosahedral particles are resistant to coarsening, and remain hard at higher temperatures, imparting good strength with ductility at 200 °C. Very few deformation structures such as high dislocation density and twins are observed after extrusion or tensile tests. Dislocations commonly observed are c-type. Due to the stability of microstructure, various post-extrusion treatments are possible. In the Mg 92.5Zn6.5Y alloy upon annealing at 400 °C the icosahedral phase transforms to a hexagonal Mg25Zn58Y 17 phase. The icosahedral phase then reprecipitates on its interface, forming a nano-composite. Effects of microstructural features on the deformation behavior are described. © 2005 Elsevier Ltd. All rights reserved.




Singh, A., Watanabe, M., Kato, A., & Tsai, A. P. (2005). Strengthening in magnesium alloys by icosahedral phase. In Science and Technology of Advanced Materials (Vol. 6, pp. 895–901).

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free