We present a reinforcement learning-based (RL) control scheme for trajectory tracking of fully-actuated surface vessels. The proposed method learns online both a model-based feedforward controller, as well an optimizing feedback policy in order to follow a desired trajectory under the influence of environmental forces. The method's efficiency is evaluated via simulations and sea trials, with the unmanned surface vehicle (USV) ReVolt performing three different tracking tasks: The four corner DP test, straight-path tracking and curved-path tracking. The results demonstrate the method's ability to accomplish the control objectives and a good agreement between the performance achieved in the Revolt Digital Twin and the sea trials. Finally, we include an section with considerations about assurance for RL-based methods and where our approach stands in terms of the main challenges.
CITATION STYLE
Martinsen, A. B., Lekkas, A. M., Gros, S., Glomsrud, J. A., & Pedersen, T. A. (2020). Reinforcement Learning-Based Tracking Control of USVs in Varying Operational Conditions. Frontiers in Robotics and AI, 7. https://doi.org/10.3389/frobt.2020.00032
Mendeley helps you to discover research relevant for your work.