Tetranitromethane bleaches Avena phytochrome. The phytochrome (far-red absorbing form; Pfr) chromophore of 124 kilodalton (kD) phytochrome is oxidized 8 times more rapidly than the red absorbing form (Pr). Proteolysis of the 124 kD molecule to the extensively studied mixture of 118 and 114 kD polypeptides increases the rate of oxidation of Pfr 5-fold without affecting the rate of Pr oxidation. As a result, the Pfr form of 118/114 kD preparations is oxidized at a rate 40 times greater than the Pr form. Further proteolytic degradation of the chromoprotein to 60 kD results in an additional increase in the oxidation rates of both Pr and Pfr. These differences in reactivity to tetranitromethane indicate that the chromophore of Pfr is either intrinsically more chemically reactive and/or physically more accessible than the Pr chromophore and that the reactivity/accessibility of both spectral forms is increased by proteolysis. The enhanced reactivity of the Pfr chromophore after proteolytic cleavage of the 6 to 10 kD polypeptide segment(s) from the 124 kD species is further evidence that these segment(s) affect the environment of the native photoreceptor.
CITATION STYLE
Hahn, T.-R., Song, P.-S., Quail, P. H., & Vierstra, R. D. (1984). Tetranitromethane Oxidation of Phytochrome Chromophore as a Function of Spectral Form and Molecular Weight. Plant Physiology, 74(4), 755–758. https://doi.org/10.1104/pp.74.4.755
Mendeley helps you to discover research relevant for your work.