A series of stable cell mutants of mouse fibroblasts were previously isolated (Roos, D. S. and R. L. Davidson, 1980, Somatic Cell Genet., 6:381-390) that exhibit varying degrees of resistance to the fusion-inducing effect of polyethylene glycol (PEG), but are morphologically similar to the parental cells from which they were derived. Biochemical analysis of these mutant cell lines has revealed differences in whole cell lipid composition which are directly correlated with their susceptibility to fusion. Fusion-resistant cells contain elevated levels of neutral lipids, particularly triglycerides and an unusual ether-linked lipid, O-alkyl, diacylglycerol. This ether lipid is increased ~35-fold over parental cells in the most highly PEG-resistant cell line. Fusion-resistant cells also contain more highly saturated fatty acyl chains (ratio of saturated to polyunsaturated fatty acids [S/P ratio] ≈ 4:1) than the parental line (S/P ratio ≈ 1:1). Cells which are intermediate in their resistance to PEG have ether lipid and fatty acid composition which is intermediate between the parental cells and the most fusion-resistant mutants. In a related communication (Roos, D. S. and P. W. Choppin, 1985, J. Cell. Biol., 100:1591-1598) evidence is presented that alteration of lipid content can predictably control the fusion response of these cells. © 1985, Rockefeller University Press., All rights reserved.
CITATION STYLE
Roos, D. S., & Choppin, P. W. (1985). Biochemical studies I. lipid composition on cell fusion. of fusion-resistant cells. Journal of Cell Biology, 101(4), 1578–1590. https://doi.org/10.1083/jcb.101.4.1578
Mendeley helps you to discover research relevant for your work.