Structural and Functional Properties of Venous Wall: Relationship between Elastin, Collagen, and Smooth Muscle Components and Viscoelastic Properties

  • Zócalo Y
  • Bia D
  • Cabrera-Fischer E
  • et al.
N/ACitations
Citations of this article
43Readers
Mendeley users who have this article in their library.

Abstract

The aims of this work were (1) to analyze the viscoelastic behavior of different venous segments and their differences, considering the structural characteristics (elastin, collagen, and smooth muscle content) of the venous wall; (2) to analyze the venous biomechanical behavior by means of the histological characteristics of the veins. Nine healthy male Corriedale sheep were included. One vein was selected from each animal to evaluate its biomechanical properties: (a) anterior vena cava, (b) right jugular vein, and (c) right femoral vein. Each selected vein was instrumented with pressure and diameter sensors. After excision, a small ring-shaped sample was set apart from each segment for histological analysis. The amounts of elastin, collagen and smooth muscle were correlated to calculated biomechanical parameters (high- and low-pressure compliance and viscosity). Conclusions are the following: (1) the viscoelastic behavior of the venous wall varies depending on the vascular territory, and it is associated with the variation of the histological structure. These differences involve muscle (both smooth and striated), elastin, and collagen contents. (2) In addition, the quantity of collagen was negatively correlated with high- and low-pressure compliances, and (3) the smooth muscle content was higher in peripheral veins and is positively correlated with venous wall viscosity.

Cite

CITATION STYLE

APA

Zócalo, Y., Bia, D., Cabrera-Fischer, E. I., Wray, S., Galli, C., & Armentano, R. L. (2013). Structural and Functional Properties of Venous Wall: Relationship between Elastin, Collagen, and Smooth Muscle Components and Viscoelastic Properties. ISRN Physiology, 2013, 1–9. https://doi.org/10.1155/2013/906031

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free