The photocatalytic degradation process and absorption kinetics of the aqueous solution of the Cibacron Brilliant Yellow 3G-P dye (Y) were investigated under UV-Vis light. Pure barium titanate BaTiO3 (BT) and cobalt ion-substituted barium Ba1−xCoxTiO3 (x = 0, …, 1) nano-compound powders (BCT) were synthesized using the sol–gel method and colloidal solution destabilization, and utilized as photocatalysts. The powder X-ray diffraction (PXRD) crystal structure analysis of the BT nanoparticles (NPs) revealed a prominent reflection corresponding to the perovskite structure. However, impurities and secondary phase distributions were qualitatively identified in the PXRD patterns for x ≥ 0.2 of cobalt substitution rate. Rietveld refinements of the PXRD data showed that the BCT nano-compound series undergoes a transition from perovskite structure to isomorphous ilmenite-type rhombohedral CoTiO3 (CT) ceramic. The nanoparticles produced displayed robust chemical interactions, according to a Fourier transform infrared spectroscopy (FTIR) analysis. The BT and BCT nanoparticles had secondary hexagonal phases that matched the PXRD results and small aggregated, more spherically shaped particles with sizes ranging from 30 to 114 nm, according to transmission electron microscopy (TEM). Following a thorough evaluation of BCT nano-compounds with (x = 0.6), energy-dispersive X-ray (EDX) compositional elemental analysis revealed random distributions of cobalt ions. Through optical analysis of the photoluminescence spectra (PL), the electronic structure, charge carriers, defects, and energy transfer mechanisms of the compounds were examined. Due to the cobalt ions being present in the BT lattice, the UV-visible absorption spectra of BCT showed a little red-shift in the absorption curves when compared to pure BT samples. The electrical and optical characteristics of materials, such as their photon absorption coefficient, can be gathered from their UV-visible spectra. The photocatalytic reaction is brought about by the electron–hole pairs produced by this absorption. The estimated band gap energies of the examined compounds, which are in the range of 3.79 to 2.89 eV, are intriguing and require more investigation into their potential as UV photocatalysts. These nano-ceramics might be able to handle issues with pollution and impurities, such as the breakdown of organic contaminants and the production of hydrogen from water.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Jebali, S., Meftah, M., Mejri, C., Ben Haj Amara, A., & Oueslati, W. (2023). Enhancement of Photocatalytic Activity and Microstructural Growth of Cobalt-Substituted Ba1−xCoxTiO3 {x = 0, …, 1} Heterostructure. ChemEngineering, 7(3). https://doi.org/10.3390/chemengineering7030043