NeuroDiag: Software for Automated Diagnosis of Parkinson's Disease Using Handwriting

0Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Objective: A change in handwriting is an early sign of Parkinson's disease (PD). However, significant inter-person differences in handwriting make it difficult to identify pathological handwriting, especially in the early stages. This paper reports the testing of NeuroDiag, a software-based medical device, for the automated detection of PD using handwriting patterns. NeuroDiag is designed to direct the user to perform six drawing and writing tasks, and the recordings are then uploaded onto a server for analysis. Kinematic information and pen pressure of handwriting are extracted and used as baseline parameters. NeuroDiag was trained based on 26 PD patients in the early stage of the disease and 26 matching controls. Methods: Twenty-three people with PD (PPD) in their early stage of the disease, 25 age-matched healthy controls (AMC), and 7 young healthy controls were recruited for this study. Under the supervision of a consultant neurologist or their nurse, the participants used NeuroDiag. The reports were generated in real-time and tabulated by an independent observer. Results: The participants were able to use NeuroDiag without assistance. The handwriting data was successfully uploaded to the server where the report was automatically generated in real-time. There were significant differences in the writing speed between PPD and AMC (P<0.001). NeuroDiag showed 86.96% sensitivity and 76.92% specificity in differentiating PPD from those without PD. Conclusion: In this work, we tested the reliability of NeuroDiag in differentiating between PPD and AMC for real-time applications. The results show that NeuroDiag has the potential to be used to assist neurologists and for telehealth applications. Clinical and Translational Impact Statement - This pre-clinical study shows the feasibility of developing a community-wide screening program for Parkinson's disease using automated handwriting analysis software, NeuroDiag.

Cite

CITATION STYLE

APA

Ngo, Q. C., McConnell, N., Motin, M. A., Polus, B., Bhattacharya, A., Raghav, S., & Kumar, D. K. (2024). NeuroDiag: Software for Automated Diagnosis of Parkinson’s Disease Using Handwriting. IEEE Journal of Translational Engineering in Health and Medicine, 12, 291–297. https://doi.org/10.1109/JTEHM.2024.3355432

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free