Identification of miRNAs Expression Profile in Gastric Cancer Using Self-Organizing Maps (SOM)

  • Gomes L
  • Moreira F
  • et al.
N/ACitations
Citations of this article
22Readers
Mendeley users who have this article in their library.

Abstract

In this paper, an unsupervised artificial neural network was implemented to identify the patters of specific signatures. The network was based on the differential expression of miRNAs (under or over expression) found in healthy or cancerous gastric tissues. Among the tissues analyzes, the neural network evaluated 514 miRNAs of gastric tissue that exhibited significant differential expression. The result suggested a specific expression signature nine miRNAs (hsa-mir-21, hsa-mir-29a, hsa-mir-29c, hsa-mir-148a, hsa-mir-141, hsa-let-7b, hsa-mir-31, hsa-mir-451, and hsa-mir-192), all with significant values (p-value < 0.01 and fold change > 5) that clustered the samples into two groups: healthy tissue and gastric cancer tissue. The results obtained "in silico" must be validated in a molecular biology laboratory; if confirmed, this method may be used in the future as a risk marker for gastric cancer development.

Cite

CITATION STYLE

APA

Gomes, L. L., Moreira, F. C., Hamoy, I. G., Santos, S., Assumpção, P., … Santos, Â. (2014). Identification of miRNAs Expression Profile in Gastric Cancer Using Self-Organizing Maps (SOM). Bioinformation, 10(5), 246–250. https://doi.org/10.6026/97320630010246

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free