Differential effect of maternal diet supplementation with α-linolenic acid or n-3 long-chain polyunsaturated fatty acids on glial cell phosphatidylethanolamine and phosphatidylserine fatty acid profile in neonate rat brains

13Citations
Citations of this article
25Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Dietary long-chain polyunsaturated fatty acids (LC-PUFA) are of crucial importance for the development of neural tissues. The aim of this study was to evaluate the impact of a dietary supplementation in n-3 fatty acids in female rats during gestation and lactation on fatty acid pattern in brain glial cells phosphatidylethanolamine (PE) and phosphatidylserine (PS) in the neonates. Methods. Sprague-Dawley rats were fed during the whole gestation and lactation period with a diet containing either docosahexaenoic acid (DHA, 0.55%) and eicosapentaenoic acid (EPA, 0.75% of total fatty acids) or α-linolenic acid (ALA, 2.90%). At two weeks of age, gastric content and brain glial cell PE and PS of rat neonates were analyzed for their fatty acid and dimethylacetal (DMA) profile. Data were analyzed by bivariate and multivariate statistics. Results: In the neonates from the group fed with n-3 LC-PUFA, the DHA level in gastric content (+65%, P < 0.0001) and brain glial cell PE (+18%, P = 0.0001) and PS (+15%, P = 0.0009) were significantly increased compared to the ALA group. The filtered correlation analysis (P < 0.05) underlined that levels of dihomo - linolenic acid (DGLA), DHA and n-3 docosapentaenoic acid (DPA) were negatively correlated with arachidonic acid (ARA) and n-6 DPA in PE of brain glial cells. No significant correlation between n-3 and n-6 LC-PUFA were found in the PS dataset. DMA level in PE was negatively correlated with n-6 DPA. DMA were found to occur in brain glial cell PS fraction; in this class DMA level was correlated negatively with DHA and positively with ARA. Conclusion: The present study confirms that early supplementation of maternal diet with n-3 fatty acids supplied as LC-PUFA is more efficient in increasing n-3 in brain glial cell PE and PS in the neonate than ALA. Negative correlation between n-6 DPA, a conventional marker of DHA deficiency, and DMA in PE suggests n-6 DPA that potentially be considered as a marker of tissue ethanolamine plasmalogen status. The combination of multivariate and bivariate statistics allowed to underline that the accretion pattern of n-3 LC-PUFA in PE and PS differ. © 2010 Destaillats et al; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Destaillats, F., Joffre, C., Acar, N., Joffre, F., Bezelgues, J. B., Pasquis, B., … Bretillon, L. (2010). Differential effect of maternal diet supplementation with α-linolenic acid or n-3 long-chain polyunsaturated fatty acids on glial cell phosphatidylethanolamine and phosphatidylserine fatty acid profile in neonate rat brains. Nutrition and Metabolism, 7. https://doi.org/10.1186/1743-7075-7-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free