ARF6 and EFA6A regulate the development and maintenance of dendritic spines

87Citations
Citations of this article
99Readers
Mendeley users who have this article in their library.

Abstract

The cellular and molecular mechanisms underlying the development and maintenance of dendritic spines are not fully understood. ADP-ribosylation factor 6 (ARF6) is a small GTPase known to regulate actin remodeling and membrane traffic. Here, we report involvement of ARF6 and exchange factor for ARF6 (EFA6A) in the regulation of spine development and maintenance. An active form of ARF6 promotes the formation of dendritic spines at the expense of filopodia. EFA6A promotes spine formation in an ARF6 activation-dependent manner. Knockdown of ARF6 and EFA6A by small interfering RNA decreases spine formation. Live imaging indicates that ARF6 knockdown decreases the conversion of filopodia to spines and the stability of early spines. The spine-promoting effect of ARF6 is partially blocked by Rac1. ARF6 and EFA6A protect mature spines from inactivity-induced destabilization. These results suggest that ARF6 and EFA6A may regulate the conversion of filopodia to spines and the stability of both early and mature spines. Copyright © 2006 Society for Neuroscience.

Author supplied keywords

Cite

CITATION STYLE

APA

Choi, S., Ko, J., Lee, J. R., Hyun, W. L., Kim, K., Hye, S. C., … Kim, E. (2006). ARF6 and EFA6A regulate the development and maintenance of dendritic spines. Journal of Neuroscience, 26(18), 4811–4819. https://doi.org/10.1523/JNEUROSCI.4182-05.2006

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free