Although ion channels are regulated by protein kinases, it has yet to be established whether the behavioral state of an animal may dictate whether or not modulation by a kinase can occur. Here, we describe behaviorally relevant changes in the ability of a nonselective cation channel from Aplysia bag cell neurons to be regulated by protein kinase C (PKC). This channel drives a prolonged afterdischarge that triggers the release of egg-laying hormone and a series of reproductive behaviors. The afterdischarge is followed by a lengthy refractory period, during which additional bursting cannot be elicited. Previously, we reported that, in excised inside-out patches, the cation channel is closely associated with PKC, which increases channel activity. We now show that this channel-kinase association is plastic, because channels excised from certain neurons lack PKC-dependent modulation. Although direct application of PKC-activating phorbol ester to these patches had no effect, exposing the neurons themselves to phorbol ester reinstated modulation, suggesting that an absence of modulation was attributable to a lack of associated kinase. Furthermore, modulation was restored by pretreating neurons with either PP1 [4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine] or SU6656, inhibitors of Src tyrosine kinase, an enzyme whose Src homology 3 domain is required for channel-PKC association. Neurons that were stimulated to afterdischarge and had entered the prolonged refractory period were found to have more phosphotyrosine staining and less channel-PKC association than unstimulated neurons. These findings suggest that Src-dependent regulation of the association between the cation channel and PKC controls both the long-term excitability of these neurons and their ability to induce reproduction. Copyright © 2005 Society for Neuroscience.
CITATION STYLE
Magoski, N. S., & Kaczmarek, L. K. (2005). Association/dissociation of a channel-kinase complex underlies state-dependent modulation. Journal of Neuroscience, 25(35), 8037–8047. https://doi.org/10.1523/JNEUROSCI.1903-05.2005
Mendeley helps you to discover research relevant for your work.