Exploring the impacts of postharvest processing on the microbiota and metabolite profiles during green coffee bean production

195Citations
Citations of this article
365Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The postharvest treatment and processing of fresh coffee cherries can impact the quality of the unroasted green coffee beans. In the present case study, freshly harvested Arabica coffee cherries were processed through two different wet and dry methods to monitor differences in the microbial community structure and in substrate and metabolite profiles. The changes were followed throughout the postharvest processing chain, from harvest to drying, by implementing up-to-date techniques, encompassing multiple-step metagenomic DNA extraction, highthroughput sequencing, and multiphasic metabolite target analysis. During wet processing, a cohort of lactic acid bacteria (i.e., Leuconostoc, Lactococcus, and Lactobacillus) was the most commonly identified microbial group, along with enterobacteria and yeasts (Pichia and Starmerella). Several of the metabolites associated with lactic acid bacterial metabolism (e.g., lactic acid, acetic acid, and mannitol) produced in the mucilage were also found in the endosperm. During dry processing, acetic acid bacteria (i.e., Acetobacter and Gluconobacter) were most abundant, along with Pichia and non-Pichia (Candida, Starmerella, and Saccharomycopsis) yeasts. Accumulation of associated metabolites (e.g., gluconic acid and sugar alcohols) took place in the drying outer layers of the coffee cherries. Consequently, both wet and dry processing methods significantly influenced the microbial community structures and hence the composition of the final green coffee beans. This systematic approach to dissecting the coffee ecosystem contributes to a deeper understanding of coffee processing and might constitute a state-of-the-art framework for the further analysis and subsequent control of this complex biotechnological process.

Cite

CITATION STYLE

APA

De Bruyn, F., Zhang, S. J., Pothakos, V., Torres, J., Lambot, C., Moroni, A. V., … De Vuyst, L. (2017). Exploring the impacts of postharvest processing on the microbiota and metabolite profiles during green coffee bean production. Applied and Environmental Microbiology, 83(1). https://doi.org/10.1128/AEM.02398-16

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free