Borrowing hydrogen from alcohols, storing it on a catalyst and subsequent transfer of the hydrogen from the catalyst to anin situgenerated imine is the hallmark of a transition metal mediated catalyticN-alkylation of amines. However, such a borrowing hydrogen mechanism with a transition metal free catalytic system which stores hydrogen molecules in the catalyst backbone is yet to be established. Herein, we demonstrate that a phenalenyl ligand can imitate the role of transition metals in storing and transferring hydrogen molecules leading to borrowing hydrogen mediated alkylation of anilines by alcohols including a wide range of substrate scope. A close inspection of the mechanistic pathway by characterizing several intermediates through various spectroscopic techniques, deuterium labelling experiments, and DFT study concluded that the phenalenyl radical based backbone sequentially adds H+, H˙ and an electron through a dearomatization process which are subsequently used as reducing equivalents to the C-N double bond in a catalytic fashion.
CITATION STYLE
Banik, A., Ahmed, J., Sil, S., & Mandal, S. K. (2021). Mimicking transition metals in borrowing hydrogen from alcohols. Chemical Science, 12(24), 8353–8361. https://doi.org/10.1039/d1sc01681d
Mendeley helps you to discover research relevant for your work.