The efficient multifunctionalization by one-pot or cascade catalytic systems has developed as an important research field, but is often challenging due to incompatibilities or cross-reactivities of the catalysts leading to side product formation. Herein we report the stereoselective preparation of cis- and trans-4-aminocyclohexanol from the potentially bio-based precursor 1,4-cyclohexanedione. We identified regio- and stereoselective enzymes catalyzing reduction and transamination of the diketone, which can be performed in a one-pot sequential or cascade mode. For this, we identified regioselective keto reductases for the selective mono reduction of the diketone to give 4-hydroxycyclohexanone. The system is modular and by choosing stereocomplementary amine transaminases, both cis- and trans-4-aminocyclohexanol were synthesized with good to excellent diastereomeric ratios. Furthermore, we identified an amine transaminase that produces cis-1,4-cyclohexanediamine with diastereomeric ratios >98 : 2. These examples highlight that the high selectivity of enzymes enable short and stereoselective cascade multifunctionalizations to generate high-value building blocks from renewable starting materials. Introduction.
CITATION STYLE
Sviatenko, O., Ríos-Lombardía, N., Morís, F., González-Sabín, J., Venkata Manideep, K., Merdivan, S., … Höhne, M. (2019). One-pot Synthesis of 4-Aminocyclohexanol Isomers by Combining a Keto Reductase and an Amine Transaminase. ChemCatChem, 11(23), 5794–5799. https://doi.org/10.1002/cctc.201900733
Mendeley helps you to discover research relevant for your work.