The suppressor mutation, named sfhC21, that allows Escherichia coli ftsH null mutant cells to survive was found to be an allele of fabZ encoding R-3-hydroxyacyl-ACP dehydrase, involved in a key step of fatty acid biosynthesis, and appears to upregulate the dehydrase. The ftsH1(Ts) mutation increased the amount of lipopolysaccharide at 42°C. This was accompanied by a dramatic increase in the amount of UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase [the lpxC (envA) gene product] involved in the committed step of lipid A biosynthesis. Pulse-chase experiments and in vitro assays with purified components showed that FtsH, the AAA-type membrane-bound metalloprotease, degrades the deacetylase. Genetic evidence also indicated that the FtsH protease activity for the deacetylase might be affected when acyl-ACP pools were altered. The biosynthesis of phospholipids and the lipid A moiety of lipopolysaccharide, both of which derive their fatty acyl chains from the same R-3-hydroxyacyl-ACP pool, is regulated by FtsH.
CITATION STYLE
Ogura, T., Inoue, K., Tatsuta, T., Suzaki, T., Karata, K., Young, K., … Matsuzawa, H. (1999). Balanced biosynthesis of major membrane components through regulated degradation of the committed enzyme of lipid A biosynthesis by the AAA protease FtsH (HflB) in Escherichia coli. Molecular Microbiology, 31(3), 833–844. https://doi.org/10.1046/j.1365-2958.1999.01221.x
Mendeley helps you to discover research relevant for your work.