Note onsets in music are acoustic landmarks providing auditory cues that underlie the perception of more complex phenomena such as beat, rhythm, and meter. For naturalistic ongoing sounds a detailed view on the neural representation of onset structure is hard to obtain, since, typically, stimulus-related EEG signatures are derived by averaging a high number of identical stimulus presentations. Here, we propose a novel multivariate regressionbased method extracting onset-related brain responses from the ongoing EEG. We analyse EEG recordings of nine subjects who passively listened to stimuli from various sound categories encompassing simple tone sequences, full-length romantic piano pieces and natural (non-music) soundscapes. The regression approach reduces the 61-channel EEG to one time course optimally reflecting note onsets. The neural signatures derived by this procedure indeed resemble canonical onset-related ERPs, such as the N1-P2 complex. This EEG projection was then utilized to determine the Cortico-Acoustic Correlation (CACor), a measure of synchronization between EEG signal and stimulus. We demonstrate that a significant CACor (i) can be detected in an individual listener's EEG of a single presentation of a full-length complex naturalistic music stimulus, and (ii) it co-varies with the stimuli's average magnitudes of sharpness, spectral centroid, and rhythmic complexity. In particular, the subset of stimuli eliciting a strong CACor also produces strongly coordinated tension ratings obtained from an independent listener group in a separate behavioral experiment. Thus musical features that lead to a marked physiological reflection of tone onsets also contribute to perceived tension in music.
CITATION STYLE
Sturm, I., Dähne, S., Blankertz, B., & Curio, G. (2015). Multi-variate EEG analysis as a novel tool to examine brain responses to naturalistic music stimuli. PLoS ONE, 10(10). https://doi.org/10.1371/journal.pone.0141281
Mendeley helps you to discover research relevant for your work.