Benchmarking machine learning models on multi-centre eICU critical care dataset

46Citations
Citations of this article
83Readers
Mendeley users who have this article in their library.

Abstract

Progress of machine learning in critical care has been difficult to track, in part due to absence of public benchmarks. Other fields of research (such as computer vision and natural language processing) have established various competitions and public benchmarks. Recent availability of large clinical datasets has enabled the possibility of establishing public benchmarks. Taking advantage of this opportunity, we propose a public benchmark suite to address four areas of critical care, namely mortality prediction, estimation of length of stay, patient phenotyping and risk of decompensation. We define each task and compare the performance of both clinical models as well as baseline and deep learning models using eICU critical care dataset of around 73,000 patients. This is the first public benchmark on a multicentre critical care dataset, comparing the performance of clinical gold standard with our predictive model. We also investigate the impact of numerical variables as well as handling of categorical variables on each of the defined tasks. The source code, detailing our methods and experiments is publicly available such that anyone can replicate our results and build upon our work.

Cite

CITATION STYLE

APA

Sheikhalishahi, S., Balaraman, V., & Osmani, V. (2020). Benchmarking machine learning models on multi-centre eICU critical care dataset. PLoS ONE, 15(7). https://doi.org/10.1371/journal.pone.0235424

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free