The deficiency of dopamine (DA) is clinically linked to several neurological diseases. The detection of urinary DA provides a noninvasive method for diagnosing these diseases and monitoring therapies. In this paper, we report the coassembly of lithocholic acid (LCA) and 3,3′-diethythiadicarbocyanine iodide (DiSC2(5)) at the equimolar ratio in ammonia solution into J-aggregate nanotubes. By integrating the J-aggregate nanotubes into transparent agarose hydrogel films formed on the wall of quartz cuvettes, we fabricate a portable and reproducible sensor platform for the optical detection of DA in synthetic urine. The J-band intensity of the integrated J-aggregate nanotubes is found to linearly decrease with the increase of DA concentrations from 10 to 80 nM, giving the limit of detection of ∼7 nM. The detection mechanism is based on the photoinduced electron transfer (PET) from the excited J-aggregate nanotubes to adsorbed DA-quinone. The PET process used in the sensor platform can reduce the interference of ascorbic acid and uric acid in the detection of DA in synthetic urine. The high sensitivity of the sensor platform is contributed by the delocalized exciton of J-aggregate nanotubes.
CITATION STYLE
Reddy, N. R., Rhodes, S., & Fang, J. (2020). Colorimetric Detection of Dopamine with J Aggregate NanotubeIntegrated Hydrogel Thin Films. ACS Omega, 5(29), 18198–18204. https://doi.org/10.1021/acsomega.0c01803
Mendeley helps you to discover research relevant for your work.