The main focus of this work is an optimization-based framework for control of multi-agent systems that synthesizes actions steering a given system towards a specified state. The primary motivation for the research presented is a fascination with birds, which save energy on long-distance flights via forming a V-shape. We ask the following question: Are V-formations a result of solving an optimization problem and can this concept be utilized in multi-agent systems, particularly in drones swarms, to increase their safety and resilience? We demonstrate that our framework can be applied to any system modeled as a controllable Markov decision process with a cost (reward) function. A key feature of the procedure we propose is its automatic adaptation to the performance of optimization towards a given global objective. Combining model-predictive control and ideas from sequential Monte-Carlo methods, we introduce a performance-based adaptive horizon and implicitly build a Lyapunov function that guarantees convergence. We use statistical model-checking to verify the algorithm and assess its reliability.
CITATION STYLE
Lukina, A. (2019). Adaptive optimization framework for control of multi-agent systems. In 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019 (pp. 9991–9992). AAAI Press. https://doi.org/10.1609/aaai.v33i01.33019991
Mendeley helps you to discover research relevant for your work.