Multimodal Fusion of Satellite Images and Crowdsourced GPS Traces for Robust Road Attribute Detection

8Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

Automatic inference of missing road attributes (e.g., road type and speed limit) for enriching digital maps has attracted significant research attention in recent years. A number of machine learning based approaches have been proposed to detect road attributes from GPS traces, dash-cam videos, or satellite images. However, existing solutions mostly focus on a single modality without modeling the correlations among multiple data sources. To bridge the gap, we present a multimodal road attribute detection method, which improves the robustness by performing pixel-level fusion of crowdsourced GPS traces and satellite images. A GPS trace is usually given by a sequence of location, bearing, and speed. To align it with satellite imagery in the spatial domain, we render GPS traces into a sequence of multi-channel images that simultaneously capture the global distribution of the GPS points, the local distribution of vehicles' moving directions and speeds, and their temporal changes over time, at each pixel. Unlike previous GPS based road feature extraction methods, our proposed GPS rendering does not require map matching in the data preprocessing step. Moreover, our multimodal solution addresses single-modal challenges such as occlusions in satellite images and data sparsity in GPS traces by learning the pixel-wise correspondences among different data sources. Extensive experiments have been conducted on two real-world datasets in Singapore and Jakarta. Compared with previous work, our method is able to improve the detection accuracy on road attributes by a large margin.

Cite

CITATION STYLE

APA

Yin, Y., Tran, A., Zhang, Y., Hu, W., Wang, G., Varadarajan, J., … Ng, S. K. (2021). Multimodal Fusion of Satellite Images and Crowdsourced GPS Traces for Robust Road Attribute Detection. In GIS: Proceedings of the ACM International Symposium on Advances in Geographic Information Systems (pp. 107–116). Association for Computing Machinery. https://doi.org/10.1145/3474717.3483917

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free