Effects of waste plastics as partial fine-aggregate replacement for reinforced low-carbon concrete pavements

13Citations
Citations of this article
48Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Using waste plastics as a partial natural aggregate replacement and monitoring strength and workability reduction in pavement structures is vital to net-carbon zero. This study explores the utilisation of waste plastic as a fine aggregate replacement in medium-strength reinforced concrete pavements, for improving plastic aggregate performance and the intrinsic reasoning for observed strength performance. Various weight fractions of fines were substituted by the same weight of plastic aggregates ranging from 5–15% according to the appropriate standards (Eurocodes and British Standards). The physical and mechanical properties of the composites were analysed. The results indicated that the use of polymeric materials as a partial replacement for fines contributed to a decrease in workability, compressive strength and push-out bond between steel reinforcement and concrete. Despite these trends, 5% replacement of fine aggregates with plastic waste surpassed all the feasibility criteria. Furthermore, using 10% of plastic replacement by weight was deemed feasible in non-structural applications such as roads, pavements, and facades. The outputs have demonstrated environmental engineering concepts in tackling plastic waste, providing an alternative to conventional aggregate. Environmental benefits can arise due to the removal of potentially hazardous plastics from entering ecosystems as well as minimising dredging of global sand reserves.

Cite

CITATION STYLE

APA

Tota-Maharaj, K., Adeleke, B. O., & Nounu, G. (2022). Effects of waste plastics as partial fine-aggregate replacement for reinforced low-carbon concrete pavements. International Journal of Sustainable Engineering, 15(1), 194–209. https://doi.org/10.1080/19397038.2022.2108156

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free