The recessive genetic male sterility (RGMS) system plays a key role in the production of hybrid varieties in self-pollinating B. napus plants, and prevents negative cytoplasmic effects. However, the complete molecular mechanism of the male sterility during malegametogenesis in RGMS remains to be determined. To identify transcriptomic changes that occur during the transition to male sterility in RGMS, we examined the male sterile line WSLA and male fertile line WSLB, which are near-isogenic lines (NILs) differing only in the fertility trait.We evaluated the phenotypic features and sterility stage using anatomical analysis. Comparative RNA sequencing analysis revealed that 3,199 genes were differentially expressed betweenWSLA andWSLB. Many of these genes are mainly involved in biological processes related to flowering, including pollen tube development and growth, pollen wall assembly and modification, and pollen exine formation and pollination. The transcript profiles of 93 genes associated with pollen wall and anther development were determined by quantitative RT-PCR in different flower parts, and classified into the following three major clades: 1) up-regulated in WSLA plants; 2) down-regulated inWSLA plants; and 3) down-regulated in buds, but have a higher expression in stigmas ofWSLA than in WSLB. A subset of genes associated with sporopollenin accumulation were all up-regulated inWSLA. An excess of sporopollenin results in defective pollen wall formation, which leads to male sterility inWSLA. Some of the genes identified in this study are candidates for future research, as they could provide important insight into the molecular mechanisms underlying RGMS in WSLA.
CITATION STYLE
Qu, C., Fu, F., Liu, M., Zhao, H., Liu, C., Li, J., … Lu, K. (2015). Comparative Transcriptome Analysis of Recessive Male Sterility (RGMS) in Sterile and Fertile Brassica napus Lines. PLoS ONE, 10(12). https://doi.org/10.1371/journal.pone.0144118
Mendeley helps you to discover research relevant for your work.