The efficacy of a synthetic peptide analogue (rD-mPGPtide), mimicking the CDR3 region in the first domain of the CD4 surface molecule, was investigated in a murine model for CD4+ T cell-mediated skin allograft rejection. A single injection of rD-mPGPtide shortly before transplantation exhibited significantly prolonged graft survival in the B6 anti-B6.C-H2bm12 MHC class II-disparate strain combination. Long-term graft survival (>100 days) was achieved when thymectomized adult recipient mice were transplanted along with rD-mPGPtide treatment. The peptide also affected secondary rechallenge responses with MHC class II allografts. In addition, the inhibitory effect of the rD-mPGPtide in this transplantation model was directed against CD4+ T cells and was exclusively specific toward donor alloantigen. In vitro analysis of CD4+ T cells isolated from the draining lymph nodes of rD-mPGPtide-treated recipients indicated a 450-fold decrease in precursor frequency in response to donor allostimulation compared with the untreated control group. There was also significant down-regulation of the frequency of IL-2-, IFN-γ-, and IL-4-producing CD4+ T cells upon in vitro allogeneic restimulation of host cells 4 days posttransplantation. However, these same CD4+ T cells maintained the capacity to produce normal cytokine levels upon third-party allostimulation. Thus, these studies demonstrate that a CD4-CDR3 peptide analogue can specifically and effectively prolong skin graft survival across MHC class II barriers.
CITATION STYLE
Koch, U., Choksi, S., Marcucci, L., & Korngold, R. (1998). A Synthetic CD4-CDR3 Peptide Analog Enhances Skin Allograft Survival Across a MHC Class II Barrier. The Journal of Immunology, 161(1), 421–429. https://doi.org/10.4049/jimmunol.161.1.421
Mendeley helps you to discover research relevant for your work.