Novel 2D velocity estimation method for large transient events in plasmas

6Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Dynamics of fast transient events are challenging to be analyzed with high time resolution. Such events can occur in fusion plasmas such as the filaments during edge-localized modes (ELMs). In this paper, we present a robust method - the spatial displacement estimation - for estimating the displacements of structures with fast dynamics from high spatial and time resolution imaging diagnostics [e.g., gas-puff imaging (GPI)] with sampling time temporal resolution. First, a background suppression method is shown, which suppresses the slowly time-evolving and spatially non-uniform background in the signal. In the second step, a two-dimensional polynomial trend subtraction method is presented to tackle the remaining polynomial order trend in the signal. After performing these pre-processing steps, the spatial displacement of the propagating structure is estimated from the two-dimensional spatial cross-correlation coefficient function calculated between consecutive frames. The method is tested for its robustness and accuracy by simulated Gaussian events and spatially displaced random noise. An example application of the method is presented on propagating ELM filaments measured by the GPI system on the National Spherical Torus Experiment spherical tokamak.

Cite

CITATION STYLE

APA

Lampert, M., Diallo, A., & Zweben, S. J. (2021). Novel 2D velocity estimation method for large transient events in plasmas. Review of Scientific Instruments, 92(8). https://doi.org/10.1063/5.0058216

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free