Food wastes have a large number of functional ingredients that have potential for valorization. Melon peels are increasingly produced as waste in food industries in Thailand. This study aimed to optimize pectin extraction conditions from melon peel for its prebiotic potential. Optimization was conducted using a response surface methodology and Box–Behnken experimental design. An analysis of variance indicated a significant interaction between the extraction conditions on extraction yield and degree of esterification (DE). These include pH and solvent-to-sample ratio. The conditions for the extraction of pectin with low DE (LDP), medium DE (MDP) and high DE (HDP) were optimized. Pectin hydrolysate from LDP, MDP and HDP was prepared by enzymatic hydrolysis into LPEH, MPEH and HPEH, respectively. LDP, MDP, HDP, LPEH, MPEH and HPEH were compared for their efficiency in terms of the growth of three probiotic strains, namely Lactobacillus plantarum TISTR 877, Lactobacillus casei TISTR 390 and Enterococcus faecium TISTR 1027. Among the samples tested, HPEH showed the highest ability as a carbon source to promote the growth and prebiotic activity score for these three probiotic strains. This study suggests that melon peel waste from agro-industry can be a novel source for prebiotic production.
CITATION STYLE
Bilraheem, S., Srinuanpan, S., Cheirsilp, B., Upaichit, A., Kawai, F., & Thumarat, U. (2024). Optimization of Pectin Extraction from Melon Peel as a New Source of Pectin and Pectin Hydrolysate with Prebiotic Potential. Foods, 13(16). https://doi.org/10.3390/foods13162554
Mendeley helps you to discover research relevant for your work.