An analysis and implementation of the hidden markov model to technology stock prediction

26Citations
Citations of this article
74Readers
Mendeley users who have this article in their library.

Abstract

Future stock prices depend on many internal and external factors that are not easy to evaluate. In this paper, we use the Hidden Markov Model, (HMM), to predict a daily stock price of three active trading stocks: Apple, Google, and Facebook, based on their historical data. We first use the Akaike information criterion (AIC) and Bayesian information criterion (BIC) to choose the numbers of states from HMM. We then use the models to predict close prices of these three stocks using both single observation data and multiple observation data. Finally, we use the predictions as signals for trading these stocks. The criteria tests’ results showed that HMM with two states worked the best among two, three and four states for the three stocks. Our results also demonstrate that the HMM outperformed the naïve method in forecasting stock prices. The results also showed that active traders using HMM got a higher return than using the naïve forecast for Facebook and Google stocks. The stock price prediction method has a significant impact on stock trading and derivative hedging.

Cite

CITATION STYLE

APA

Nguyen, N. (2017). An analysis and implementation of the hidden markov model to technology stock prediction. Risks, 5(4). https://doi.org/10.3390/risks5040062

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free