A novel concept for a compact high-field magnet coil is introduced. This is based on stacking slit annular discs cut from bulk rare-earth barium cuprate ((RE)BCO) ceramic in a Bitter-like architecture. Finite-element modelling shows that a small 20 turn stack (with a total coil volume of < 20 cm3) is capable of generating a central bore magnetic field of > 2 T at 77 K and > 20 T at 30 K. Unlike resistive Bitter magnets, the high-temperature superconducting (HTS) Bitter stack exhibits significant non-linear field behaviour during current ramping, caused by current filling proceeding from the inner radius outwards in each HTS layer. Practical proof-of-concept for this architecture was then demonstrated through fabricating an uninsulated four-turn prototype coil stack and operating this at 77 K. A maximum central field of 0.382 T was measured at 1.2 kA, with an accompanying 6.1 W of internal heat dissipation within the coil. Strong magnetic hysteresis behaviour was observed within the prototype coil, with ≈30% of the maximum central field still remaining trapped 45 min after the current had been removed. The coil was thermally stable during a 15 min hold at 1 kA, and survived thermal cycling to room temperature without noticeable deterioration in performance. A final test-to-destruction of the coil showed that the limiting weak point in the stack was growth-sector boundaries present in the original (RE)BCO bulk.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Taylor, R. W., Weijers, H. W., Ainslie, M. D., Congreve, J. V. J., Durrell, J. H., Badcock, R. A., & Bumby, C. W. (2024). A proof-of-concept Bitter-like HTS electromagnet fabricated from a silver-infiltrated (RE)BCO ceramic bulk. Superconductor Science and Technology, 37(3). https://doi.org/10.1088/1361-6668/ad268b