The aim of this study was to develop a method for assessing the growth of photoautotrophs on plaster coatings, which will be used to reliably assess the resistance of these materials to photoautotrophic growth in the simulation of long-term exposure. In the course of the study, mineral and silicone plaster substrates were inoculated with a mixture of Stichococcus bacillaris, Nostoc commune, Pseudochlorella signiensis, and Coenochloris signiensis, and incubated for 28 days in model conditions. At 14 and 28 days after inoculation, the degree of photoautotrophic growth was determined using hemocytometer cell counting, a HY-LiTE 2 ATP measuring system, chlorophyll a concentration quantification, CIE L*a*b spectrophotometric color change evaluation, and visual assessment. The acquired results allowed us to select visual assessment and spectrophotometric color change evaluation as quick-to-perform and reliable techniques for further laboratory studies. The impact of minor changes introduced in the inoculation and incubation procedures on the rate of biofilm formation and severity of microbial fouling was studied. Differences in inoculation and incubation procedures strongly affected the results of the performed tests. Both methods have shown high potential and should be further expanded upon in environmental studies.
CITATION STYLE
Komar, M., Szulc, J., Kata, I., Szafran, K., & Gutarowska, B. (2023). Development of a Method for Assessing the Resistance of Building Coatings to Phoatoautotrophic Biofouling. Applied Sciences (Switzerland), 13(14). https://doi.org/10.3390/app13148009
Mendeley helps you to discover research relevant for your work.