Algae-meditated route to cuprous oxide (Cu2O) nanoparticle: differential expression profile of MALAT1 and GAS5 LncRNAs and cytotoxic effect in human breast cancer

10Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Breast cancer (BC), as the most widely recognized disease in women worldwide, represents about 30% of all cancers impacting women. This study was aimed to synthesize Cu2O nanoparticles from the cystoseira myrica algae (CM-Cu2O NPs) assess their antimicrobial activity against pathogenic bacteria and fungi. We evaluated the expression levels of lncRNAs (MALAT1 and GAS5) and apoptosis genes (p53, p27, bax, bcl2 and caspase3), their prognostic roles. Methods: In this study, CM-Cu2O NPs synthesized by cystoseira myrica algae extraction used to evaluate its cytotoxicity and apoptotic properties on MDA-MB-231, SKBR3 and T-47D BC cell lines compared to HDF control cell line. The CM-Cu2O NPs was characterized by UV–Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Transmission electron microscopy (TEM) and Scanning electron microscopy (SEM). The antimicrobial activity of CM-Cu2O NPs was assessed against pathogenic bacteria, staphylococcus aureus (S. aureus) PTCC 1112 bacteria as a standard gram-positive bacteria and pseudomonas aeruginosa (P. aeruginosa) PTCC 1310 as a standard gram-negative bacterium. Expression profile of MALAT1 and GAS5 lncRNAs and apoptosis genes, i.e., p27, bax, bcl2 and caspase3 genes, were calculated utilizing qRT-PCR. The changes in the expression levels were determined using the DDCT method. Results: MALAT1 was upregulated in MDA-MB-231, SKBR3 and T-47D BC (p < 0.01), while GAS5 was downregulated in SKBR3 and T-47D cell lines tested compared with HDF control cell line (p < 0.05) was found. The results revealed that, p27, bax and caspase3 were significantly upregulated in BC cell lines as compared with normal cell line. Bcl2 expression was also significantly increased in MDA-MB-231 and T47D cell lines compared with normal cell line, but bcl2 levels were downregulated in SKBR3 cell line. Conclusions: Our results confirm the beneficial cytotoxic effects of green-synthesized CM-Cu2O NPs on BC cell lines. This nanoparticle decreased angiogenesis and induces apoptosis, so we conclude that CM-Cu2O NPs can be used as a supplemental drug in cancer treatments. Significantly, elevated circulating lncRNAs were demonstrated to be BC specific and could differentiate BC cell lines from the normal cell lines. It was demonstrated that lncRNAs used in this study and their expression profiles can be created as biomarkers for early diagnosis and prognosis of BC. Further studies utilizing patients would give recognizable identification of lncRNAs as key players in intercellular interactions.

Cite

CITATION STYLE

APA

Taherzadeh-Soureshjani, P., & Chehelgerdi, M. (2020). Algae-meditated route to cuprous oxide (Cu2O) nanoparticle: differential expression profile of MALAT1 and GAS5 LncRNAs and cytotoxic effect in human breast cancer. Cancer Nanotechnology, 11(1). https://doi.org/10.1186/s12645-020-00066-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free