A late-surviving phytosaur from the northern Atlantic rift reveals climate constraints on Triassic reptile biogeography

1Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: The origins of all major living reptile clades, including the one leading to birds, lie in the Triassic. Following the largest mass extinction in Earth’s history at the end of the Permian, the earliest definite members of the three major living reptile clades, the turtles (Testudines), crocodylians and birds (Archosauria), and lizards, snakes, amphisbaenians, and Tuatara (Lepidosauria) appeared. Recent analyses of the Triassic reptile fossil record suggest that the earliest diversifications in all three of these clades were tightly controlled by abrupt paleoclimate fluctuations and concordant environmental changes. Yet, this has only been preliminarily tested using information from evolutionary trees. Phytosauria consists of superficially crocodylian-like archosaurs that either form the sister to the crown or are the earliest divergence on the crocodylian stem and are present throughout the Triassic, making this clade an excellent test case for examining this biogeographic hypothesis. Results: Here, I describe a new phytosaur, Jupijkam paleofluvialis gen. et sp. nov., from the Late Triassic of Nova Scotia, Canada, which at that time sat in northern Pangaea near the northern terminus of the great central Pangean rift. As one of the northernmost occurrences of Phytosauria, J. paleofluvialis provides critical new biogeographic data that enables revised estimations of phytosaur historical biogeography along phylogenies of this clade built under multiple methodologies. Reconstructions of phytosaur historical biogeography based on different phylogenies and biogeographic models suggest that phytosaurs originated in northern Pangaea, spread southward, and then dispersed back northward at least once more during the Late Triassic. Conclusions: The results presented in this study link phytosaur biogeography to major changes to Triassic global climate and aridity. Together with the earliest dinosaurs and several other reptile lineages, phytosaur diversification and migration appear to have been restricted by the formation and loss of arid belts across the Pangean supercontinent.

Cite

CITATION STYLE

APA

Brownstein, C. D. (2023). A late-surviving phytosaur from the northern Atlantic rift reveals climate constraints on Triassic reptile biogeography. BMC Ecology and Evolution, 23(1). https://doi.org/10.1186/s12862-023-02136-8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free