The Effect of Foam Rolling for Three Consecutive Days on Muscular Efficiency and Range of Motion

32Citations
Citations of this article
169Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Foam rolling (FR) has been shown to alleviate some symptoms of exercise-induced muscle damage and has been suggested to increase range of motion (ROM) without negatively impacting strength. However, it is unclear what neuromuscular effects, if any, mediate these changes. Methods: In a randomized, crossover design, 16 healthy active males completed 2 min of rest or FR of the knee extensors on three consecutive days. Mechanical properties of vastus lateralis (VL) and rectus femoris (RF) were assessed via Tensiomyography. Knee extension maximal voluntary contraction (MVC) and knee flexion ROM were also assessed, and surface electromyography amplitude (RMS) was recorded during a submaximal isometric contraction (50% of MVC). Measures were performed before and after (0, 15, and 30 min) FR or rest. Results: MVC was reduced on subsequent days in the rest condition compared to FR (p = 0.002, pη2 = 0.04); ROM was not different across time or condition (p = 0.193, pη2 = 0.01). Stiffness characteristics of the VL were different on the third day of FR (p = 0.002, pη2 = 0.03). RMS was statistically reduced 0, 15, and 30 min after FR compared to rest (p = 0.006, pη2 = 0.03; p = 0.003, pη2 = 0.04; p = 0.002, pη2 = 0.04). Conclusions: Following FR, MVC was elevated compared to rest and RMS was transiently reduced during a submaximal task. Excitation efficiency of the involved muscles may have been enhanced by FR, which protected against the decline in MVC which was observed with rest.

Cite

CITATION STYLE

APA

Macgregor, L. J., Fairweather, M. M., Bennett, R. M., & Hunter, A. M. (2018). The Effect of Foam Rolling for Three Consecutive Days on Muscular Efficiency and Range of Motion. Sports Medicine - Open, 4(1). https://doi.org/10.1186/s40798-018-0141-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free