An evolutionarily conserved long noncoding RNA TUNA controls pluripotency and neural lineage commitment

268Citations
Citations of this article
364Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Here, we generated a genome-scale shRNA library targeting long intergenic noncoding RNAs (lincRNAs) in the mouse. We performed an unbiased loss-of-function study in mouse embryonic stem cells (mESCs) and identified 20 lincRNAs involved in the maintenance of pluripotency. Among these, TUNA (Tcl1 Upstream Neuron- Associated lincRNA, or megamind) was required for pluripotency and formed a complex with three RNA-binding proteins (RBPs). The TUNA-RBP complex was detected at the promoters of Nanog, Sox2, and Fgf4, and knockdown of TUNA or the individual RBPs inhibited neural differentiation of mESCs. TUNA showed striking evolutionary conservation of both sequence- and CNS-restricted expression in vertebrates. Accordingly, knockdown of tuna in zebrafish caused impaired locomotor function, and TUNA expression in the brains of Huntington's disease patients was significantly associated with disease grade. Our results suggest that the lincRNA TUNA plays a vital role in pluripotency and neural differentiation of ESCs and is associated with neurological function of adult vertebrates. © 2014 Elsevier Inc.

Cite

CITATION STYLE

APA

Lin, N., Chang, K. Y., Li, Z., Gates, K., Rana, Z. A., Dang, J., … Rana, T. M. (2014). An evolutionarily conserved long noncoding RNA TUNA controls pluripotency and neural lineage commitment. Molecular Cell, 53(6), 1005–1019. https://doi.org/10.1016/j.molcel.2014.01.021

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free