Os movimentos de massa são um dos principais fenômenos responsáveis por desastres naturais no Brasil. O mapeamento pode auxiliar no ordenamento territorial das áreas suscetíveis. As redes neurais artificiais se destacam na modelagem e mapeamento de suscetibilidade por sua elevada acurácia, capacidade de aprendizagem e generalização dos resultados. Assim, este estudo teve como objetivo mapear áreas suscetíveis a movimentos de massa, considerando quatro conjuntos amostrais, a partir de um modelo de RNA. Para tal, foi elaborado um inventário de cicatrizes, extraídos atributos do terreno e analisados conforme sua importância para os modelos, organizados os conjuntos amostrais conforme duas áreas amostrais e dois processos de reamostragem, realizados treinamentos, validação e teste dos modelos, e reclassificação e espacialização das áreas suscetíveis. Foram identificadas 297 cicatrizes de movimentos de massa, as quais cobriram uma área de 1,06 km². As variáveis preditivas que apresentaram maior importância foram a elevação, seguida pela declividade, fator LS e profundidade do vale. Foi observado que a restrição de área para coleta de amostras aleatórias de não ocorrência pode afetar a capacidade de generalização do modelo, enquanto a redução do conjunto amostral de treinamento diminui o tempo de processamento, sem interferir significativamente na acurácia. Pode-se concluir que as RNA se mostraram capazes de modelar as áreas suscetíveis, com acurácia no mapeamento próximas ou superiores a 0,9.
CITATION STYLE
Quevedo, R. P., Oliveira, G. G. de, & Guasselli, L. A. (2020). Mapeamento de Suscetibilidade a Movimentos de Massa a partir de Redes Neurais Artificiais. Anuário Do Instituto de Geociências - UFRJ, 43(2). https://doi.org/10.11137/2020_2_128_138
Mendeley helps you to discover research relevant for your work.