Currently, animal models used in research on implant-associated osteomyelitis primarily use intramedullary fixation and initial inoculum of planktonic bacterial cells. However, these techniques have certain limitations, including lack of rotational stability and instable inoculation. To improve these models, the present study aimed to establish a novel rabbit model of implant‑associated osteomyelitis using biofilm as the initial inoculum following plate fixation of the femoral fracture. A total of 24 New Zealand White rabbits were randomly divided into two equal groups. Osteotomy was performed at the right femoral shaft using a wire saw following fixation with a 5-hole stainless steel plate. The plates were not colonized with bacteria in group 1, but colonized with a biofilm of Staphylococcus aureus (American Type Culture Collection, 25923) in group 2. All the rabbits were sacrificed after 21 days for clinical, X-ray, micro-computed tomography and histological assessments of the severity of osteomyelitis. Scanning electron microscopy and confocal laser scanning microscopy were used for biofilm assessment. In group 2, pus formation, periosteal reaction, cortical destruction and absorption were observed in all the rabbits and biofilm formation was observed on all the plates. However, no pus formation was observed except for a slight inflammatory response and all the plates appeared clean without infection in group 1. The differences between the two groups were statistically significant regarding histologic scores and semi‑quantification of the bacteria on the plates (P<0.001). In the present study, a novel rabbit model of infection following internal plate fixation of open fracture was successfully established, providing a novel tool for the study of implant-associated osteomyelitis.
CITATION STYLE
Zhang, X., Ma, Y. F., Wang, L., Jiang, N., Qin, C. H., Hu, Y. J., & Yu, B. (2017). A rabbit model of implant‑related osteomyelitis inoculated with biofilm after open femoral fracture. Experimental and Therapeutic Medicine, 14(5), 4995–5001. https://doi.org/10.3892/etm.2017.5138
Mendeley helps you to discover research relevant for your work.