AMP activated kinase negatively regulates hepatic Fetuin-A via p38 MAPK-C/EBPβ/E3 Ubiquitin Ligase Signaling pathway

3Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Fetuin-A (Fet-A) is a liver-secreted phosphorylated protein, known to impair insulin signaling, which has been shown to be associated with obesity, insulin resistance, and incident diabetes. Fet-A interacts with the insulin-stimulated insulin receptor (IR) and inhibits IR tyrosine kinase activity and glucose uptake. It has been shown that high glucose increases FetA expression through the ERK1/2 signaling pathway. However, factors that downregulate Fet-A expression and their potential mechanisms are unclear. We examined the effect of AMP-activated protein kinase (AMPK) on high-glucose induced Fet-A expression in HepG2 cells, Hep3B cells and primary rat hepatocytes. High glucose increased Fet-A and phosphorylated (Ser312) fetuin-A (pFet-A) expression, which are known to impair insulin signaling. AICAR-induced AMPK activation significantly down-regulated high glucose-induced Fet-A expression and secretion of pFet-A while treatment with Compound C (AMPK inhibitor), SB202190 (p38 MAPK inhibitor) or p38 MAPK siRNA transfection prevented AICAR-induced downregulation of Fet-A expression. In addition, activation of p38 MAPK, by anisomycin, decreased the hepatic expression of Fet-A. Further, we our studies have shown that short-term effect of AICAR-treatment on Fet-A expression was mediated by proteosomal degradation, and long-term treatment of AICAR was associated with decrease in hepatic expression of C/EBP beta, an important transcription factor involved in the regulation of FetA. Taken together, our studies implicate a critical role for AMPK-p38 MAPK-C/EBPb-ubiquitin-proteosomal axis in the regulation of the expression of hepatic Fet-A.

Cite

CITATION STYLE

APA

Kothari, V., Babu, J. R., & Mathews, S. T. (2022). AMP activated kinase negatively regulates hepatic Fetuin-A via p38 MAPK-C/EBPβ/E3 Ubiquitin Ligase Signaling pathway. PLoS ONE, 17(5 May). https://doi.org/10.1371/journal.pone.0266472

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free