Nonoptimal component placement of the human connectome supports variable brain dynamics

1Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

Neural systems are shaped by multiple constraints, balancing region communication with the cost of establishing and maintaining physical connections. It has been suggested that the lengths of neural projections be minimized, reducing their spatial and metabolic impact on the organism. However, long-range connections are prevalent in the connectomes across various species, and thus, rather than rewiring connections to reduce length, an alternative theory proposes that the brain minimizes total wiring length through a suitable positioning of regions, termed component placement optimization. Previous studies in nonhuman primates have refuted this idea by identifying a nonoptimal component placement, where a spatial rearrangement of brain regions in silico leads to a reduced total wiring length. Here, for the first time in humans, we test for component placement optimization. We show a nonoptimal component placement for all subjects in our sample from the Human Connectome Project (N = 280; aged 22–30 years; 138 females), suggesting the presence of constraints—such as the reduction of processing steps between regions—that compete with the elevated spatial and metabolic costs. Additionally, by simulating communication between brain regions, we argue that this suboptimal component placement supports dynamics that benefit cognition.

Cite

CITATION STYLE

APA

Hayward, C. J., Huo, S., Chen, X., & Kaiser, M. (2023). Nonoptimal component placement of the human connectome supports variable brain dynamics. Network Neuroscience, 7(1), 254–268. https://doi.org/10.1162/netn_a_00282

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free